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Abstract

Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment
relationships using climate envelope models can enhance our understanding of climate change effects on
biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of
individual species. While increasing interest has focused on the role of uncertainty in future conditions on model
predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate
envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model
performance and predictions across alternative climate data sets available for model training. Here, we seek to fill
that gap by comparing variability in predictions between two contemporary climate data sets to variability in
spatial predictions among three alternative projections of future climate. Overall, correlations between monthly
temperature and precipitation variables were very high for both contemporary and future data. Model performance
varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions
varied more among alternative general-circulation models describing future climate conditions than between
contemporary climate data sets. However, we did find that climate envelope models with low Cohen’s kappa
scores made more discrepant spatial predictions between climate data sets for the contemporary period than did
models with high Cohen’s kappa scores. We suggest conservation planners evaluate multiple performance metrics
and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope
models.

Keywords: climate change; climate envelope model; endangered species; Florida; uncertainty

Received: July 2, 2012; Accepted: March 18, 2014; Published Online Early: March 2014; Published: June 2014

Citation: Watling JI, Fletcher RJ Jr, Speroterra C, Bucklin DN, Brandt LA, Romañach SS, Pearlstine LG, Escribano Y,
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Introduction

Climate change creates new challenges for natural
resource managers by changing the dynamics between
species and their environment (Thomas et al. 2004). For
example, species ranges may shift and current protected
area networks may no longer encompass suitable climate
space for the species for which they were designed
(Hannah et al. 2007). In recognition of these potential
effects, many efforts have been initiated to assess
vulnerability of species to climate change and develop
strategies for responding to climate change in ways that
continue to protect species and habitats (Povilitis and
Suckling 2010; Rowland et al. 2011; Reece and Noss
2013). The use of modeling for forecasting potential
impacts of climate change and aiding in development of
strategies is becoming increasingly common (Araújo and
Peterson 2012).

Climate envelope models (CEMs) are one type of
model widely used to forecast potential climate change
effects on biodiversity (Thomas et al. 2004; Lawler et al.
2009). A general approach to climate envelope modeling
is to describe the climate conditions currently experi-
enced by a species (the climate envelope) and forecast
the future spatial distribution of the climate envelope
according to projections of future climate change,
assuming the contemporary species–climate relationship
will hold true (Franklin 2009). There are numerous
sources of uncertainty in predictions from CEMs (Dor-
mann et al. 2008), including errors in the georeferenced
species occurrences used in model training (Guisan et al.
2007), differences in the algorithm used to model
species–environment relationships (Elith et al. 2006),
potential sample biases in data used for model building
(Kadmon et al. 2004; McCarthy et al. 2012), and
differences among the future climate scenarios being
modeled (Real et al. 2010).

Although the calibration of initial conditions can have
substantive impacts on model performance and predic-
tions (Araújo and New 2007), few studies have evaluated
the consequences of using alternative climate data sets
to define initial conditions in CEMs (but see Morin and
Chuine 2005 and Parra and Monahan 2008). In this paper
we address that gap by quantifying performance and
spatial predictions of CEMs using two different contem-
porary data sets and then directly contrasting variability
in spatial predictions from CEMs developed with
different contemporary climate data sets to the variabil-
ity in spatial predictions across three alternative projec-
tions of future climate.

Climate change is expected to be an important driver
of ecological change in the 21st century and beyond
(Rosenzweig et al. 2008), and there are many data
sets available to describe historical, contemporary, and

future climate conditions (http://www.ipcc-data.org).
Given uncertainty in the course of future climate change
(often described in the context of alternative carbon
dioxide [CO2] emissions scenarios; Nakicenović and
Swart [2000]), and in the projections of alternative
Atmospheric–Oceanic General Circulation Models (here-
after, GCMs; Diniz-Filho et al. 2009), an increasingly
common approach in predictive modeling uses ensem-
ble forecasts that draw on multiple projections from
different models to describe some of the uncertainty
in projections of future conditions (Araújo and New
2007). Much less attention has been directed at
understanding how variation in contemporary climate
data sets influences model predictions. However, a
previous study found considerable variation in model
performance and spatial predictions between two
contemporary climate data sets for predictions of
mammals in California using a single modeling algo-
rithm (Parra and Monahan 2008).

Models are an important tool for natural resource
decision-making, but uncertainties and limitations of
models should be described as explicitly as possible
when used to guide conservation policy (Real et al. 2010).
Because protection of threatened and endangered
species is a global environmental policy priority, our
study provides a real-world example for quantifying
variability in the climate data used to construct
CEMs, and understanding effects of that variability on
performance and spatial predictions of models describ-
ing species responses to climate change. We created
CEMs for 12 species of federally listed threatened and
endangered terrestrial vertebrates occurring in peninsu-
lar Florida (U.S. Endangered Species Act, ESA 1973, as
amended; Table 1). The species differ in range size and
degree of ecological specialization, allowing us to test
performance and predictions of CEMs across a range of
ecological contexts. We selected these species because
their precarious status in the United States makes them
likely candidates for vulnerability assessments (USFWS
2010), for which climate envelope models may provide
key information. Development of robust, data-driven
CEMs can play an integral role in determining future
management strategies for these and other species in
the face of climate change.

Because little is known about how differences in
contemporary climate data sets affect CEMs, our
overarching objective was to examine variation in spatial
predictions from models calibrated using two alternative
climate data sets. We compared variation in spatial
predictions attributable to differences in the contempo-
rary climate data set on which models were calibrated to
the variation in predictions made using different GCMs
describing future climate. To make our comparisons
as generalizable as possible, we used three different
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modeling algorithms and 12 different species in our
study. We asked four specific questions, the first about
the climate data themselves, followed by three questions
about the effects of climate data on the outputs of the
species’ CEMs. First, is the discrepancy between contem-
porary climate data sets greater or less than the
discrepancy among data sets describing future climate?
Second, does CEM performance differ between models
constructed using two alternative data sets of contem-
porary climate? Third, is the discrepancy in spatial
predictions from CEMs using two alternative contempo-
rary climate data sets less than the discrepancy in spatial
predictions of future conditions made using data from
three alternative GCMs? Fourth, is the discrepancy in
spatial predictions using two alternative climate data sets
associated with model performance?

Methods

We used two alternative climate data sets—the
WorldClim data set (Hijmans et al. 2005) and the Climate
Research Unit (CRU) data set (New et al. 2002)—to
describe the contemporary climate conditions on which
models were calibrated. The WorldClim data set is global
in extent, covers a time span of approximately 50
years (1950–2000) and is available at spatial resolutions

ranging from approximately 30 arc-seconds to 10 arc-
minutes. The CRU data set is also global in extent, covers
a time span of 29 years (1961–1990) and is available at a
resolution of approximately 10 arc-min (all models
described herein were created at the common resolution
shared by the two data sets, 10 arc-min, or 1/6th of a
degree). Both data sets draw on observations from
ground-based climate stations and are widely used by
researchers to forecast climate change effects on species.
A preliminary comparison between the two data sets
was made by Hijmans et al. (2005), who suggested that
differences between the WorldClim and CRU data may
be attributable to differences in the elevation data used
as covariates in the interpolation of climate surfaces,
differences in the number of weather stations included in
the two studies, and differences in the way the climate
surfaces were described for each 10 arc-min grid cell (an
average value was used for the WorldClim data, whereas
estimated climate in the middle of the grid cell was used
for the CRU data). We used untransformed monthly
climate variables rather than derived bioclimate variables
because previous work showed that model performance
and predictions were similar whether monthly or
bioclimate data were used (Watling et al. 2012), and we
assumed that many users would be more likely to use
untransformed data.

Table 1. Species and climate predictors used in construction of climate envelope models compiled in 2011.

Common name Scientific name Predictor variables

Mammals

Florida panther Puma concolor coryi Temperature: July, October

Precipitation: February, April, May, August, September, October

Birds

Florida grasshopper sparrow Ammodramus savannarum floridanus Temperature: September

Precipitation: February, May, June, October

Florida scrub jay Aphelocoma coerulescens Temperature: July, November

Precipitation: January, March, May, June, August, October

Piping plover Charadrius melodus Temperature: July, October

Precipitation: February, May, September, October

Wood stork Mycteria americana Temperature: July, October

Precipitation: March, May, July, September, October

Audubon crested caracara Polyborus plancus audubonii Temperature: August, November

Precipitation: April, May, September, December

Everglades snail kite Rostrhamus sociabilis plumbeus Temperature: July, September, November

Precipitation: February, April, May, September, October

Whooping crane Grus americana Temperature: July, October

Precipitation: March, May, August, October

Red-cockaded woodpecker Picoides borealis Temperature: August

Precipitation: March, May, June, July, September

Reptiles and amphibians

American crocodile Crocodylus acutus Temperature: May, December

Precipitation: January, April, May, July, September, October, November

Sand skink Neoseps reynoldsi Temperature: September, December

Precipitation: February, April, May, June, August, September, October

Eastern indigo snake Drymarchon corais couperi Temperature: July, September

Precipitation: February, April, May, August, September, October
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Data on future climate conditions were extracted from
downscaled projections of 21st century climate change
(Tabor and Williams 2010). We used average projections
for the years 2041–2060 from three GCMs (the Geophys-
ical Fluid Dynamics Laboratory Coupled Model version
2.0, the National Center for Atmospheric Research Com-
munity Climate System Model version 3.0, and the
Hadley Center for Climate Prediction, United Kingdom
Meteorological Office coupled model version 3.0) under
the A1B CO2 emission scenario (a high-emissions
scenario that assumes a balance between fossil-intensive
and nonfossil future energy sources; Nakicenović and
Swart 2000).

We compiled georeferenced species occurrences from
a variety of online databases and the primary literature
(Table S1, Supplemental Material). Occurrences were
preprocessed to remove erroneous data, dubious
records, or occurrences falling far outside the native
geographic range of species. Occurrences from coastal
areas that fell just outside the domain of the climate data
were ‘snapped’ to the nearest terrestrial grid cell, and all
duplicate observations per grid cell were removed. We
used a modification of the target group approach
(Phillips et al. 2009) to define an ecologically relevant
domain for model development. Briefly, the target group
approach specifies that model domain be defined by the
composite geographic range of ecologically similar
species sampled using similar methods as the focal
species. Details on the delineation of the target group
domain for each species are included in Text S1
(Supplemental Material). Georeferenced observations of
all target group species were obtained from a single
online database (the Global Biodiversity Information
Facility; www.gbif.org), data were preprocessed as
described for the species being modeled, and the
100% minimum convex polygon defining each target
group was used as a mask to extract climate data from
the two climate databases.

Predictor variables for each model were drawn from a
pool of 24 candidate variables (12 monthly observations
each of mean temperature and precipitation) using
ecological niche factor analysis (Hirzel et al. 2002). To
reduce the effects of colinearity among predictor
variables, we removed highly correlated (r . 0.85)
variables from the analysis based on inspection of the
cluster diagram of variable correlation in the Biomapper
program (Hirzel et al. 2002). When multiple intercorre-
lated variables were included in a cluster, we retained the
variable that was most associated with species presence
(based on its marginality, the extent to which a species
occurs in areas where climate differs most significantly
from average conditions in the study area; Hirzel et al.
2002) but less correlated (r , 0.85) with other selected
variables. We arbitrarily chose to use the CRU data set to
identify predictor variables for modeling, after which the
corresponding subset of predictor variables was extract-
ed from the WorldClim data set.

Climate envelope models were constructed for each
species using three different algorithms: Maximum
entropy (Phillips et al. 2006; Phillips and Dudı́k 2008),
Generalized Linear Models (GLMs; McCullugh and Nelder

1989) and Random Forests (RF; Cutler et al. 2007). All
three algorithms are capable of generating high-perfor-
mance models (Elith et al. 2006; Guisan et al. 2007; Elith
and Graham 2009). Maximum entropy models were
coded in R (R Development Core Team 2005) but run in
the program Maxent (Phillips et al. 2006), and the
remaining algorithms were run in the program R.
Because we lack true absence data for all species, we
randomly generated 10,000 pseudo-absences (Chefaoui
and Lobo 2008) for model development. Although the
use of 10,000 pseudo-absences is somewhat arbitrary,
many studies use this number of points for model
training (e.g., Guisan et al. 2007; Phillips et al. 2009;
VanDerWal et al. 2009). For all models, 75% of the
presence data were used for model training and 25% used
for model testing. For Maxent, we used default settings
except to define randomization conditions, which were
the same as for models run in R (see below). For GLMs, we
transformed the binary (presence or absence) response
using the logit transformation (calculated as the natural
log of the odds of presence or absence), and considered
only additive effects of predictor variables (e.g., we did not
include interactions among predictors). For RFs, we ‘grew’
500 trees per species and the number of predictors used
to construct each individual tree was p/3 where p =
number of predictors in the full model (which varied for
each species, Table 1; Liaw and Wiener 2002). In all cases,
we included linear predictor combinations only, ran
100 replicate models using random subsets of the
presence data for the training–testing split, and calculated
performance metrics for each replicate model run.
Prediction maps were created using all species observa-
tions.

The total number of observations for a species differed
slightly because the climate grids had slightly different
spatial configurations and therefore a different number
of grid cells was occupied by each species (e.g., three
nearby coordinates may occupy three different grid cells
in one climate grid, but only two cells in another grid
because the grids themselves are not perfectly aligned).
In addition, the CRU data set contained slightly fewer
cells than the WorldClim data set (see Figure 1 for a
visual comparison of the two data sets). We allowed
the number of observations to differ between data sets
because we used the same process (snapping of oc-
currences to nearest grid cell and removal of duplicate
observations from all grid cells) for both climate data
sets, and therefore our results represent those that
would be obtained using a single data set.

We used two performance metrics for model evalua-
tion. The area under the receiver–operator curve (AUC)
measures the tendency for a random occupied grid cell
to have a higher suitability than a random pseudo-
absence cell (Fielding and Bell 1997). High AUC values
indicate models that are best able to discriminate
between sites occupied by a species and random points.
Cohen’s kappa (hereafter, kappa) is a measure of
agreement between predicted and observed presence
or absence that corrects for agreement resulting from
random chance (Fielding and Bell 1997). Kappa requires
that the user define a threshold beyond which a

Climate Envelope Model Predictions J.I. Watling et al.

Journal of Fish and Wildlife Management | www.fwspubs.org June 2014 | Volume 5 | Issue 1 | 17



probability is interpreted as presence. There are many
approaches to defining this threshold (Freeman and
Moisen 2008) and we chose one of the most robust
methods by identifying the threshold that resulted in
maximum kappa. To identify this threshold, we made five
replicate model runs using random subsets of the
species occurrence data as described above for each
0.01-unit change in threshold between 0.01 and 0.99 and
calculated kappa for each randomization. We calculated
the average kappa for each incremental change in the
threshold to identify the threshold at which kappa was
maximized. This threshold was used in the ‘full’ series of
100 randomizations described above. We summarized
model performance by averaging results across the 100
randomizations for each species by algorithm and
climate data set partition. Example code for running
species models is included as Text S2 (Supplemental
Material), and occurrence data sets used for analyses of
CRU and WorldClim data are included as Tables S2 and
S3 (Supplemental Material), respectively.

Statistical analyses
To answer our first research question (Is the

discrepancy between contemporary climate data sets
greater or less than the discrepancy between projec-
tions of future climate?), we calculated spatial correla-
tions (wherein the observation of a given cell in one
map was paired with the corresponding cell from a
second map, and Pearson’s correlation calculated across
all cells in the two maps; Syphard and Franklin 2009)
between CRU and WorldClim maps as contemporary
estimates of monthly precipitation and monthly mean
temperature and among pairwise combinations of GCM
projection maps of future climate. We then used t-tests
to assess spatial correlation between time steps by
comparing the average spatial correlation between
contemporary climate data sets with the average spatial
correlation across GCM projections for temperature and

precipitation separately (N = 12 monthly observations
of temperature and precipitation). We also used t-tests
to compare the average spatial correlation among
temperature variables to the average spatial correlation
among precipitation variables for each time step (con-
temporary and future) separately.

To evaluate the potential for spatial autocorrelation in
the climate data layers to influence our results, we used
the Clifford et al. correction (Clifford et al. 1989) to test
whether correlations between CRU and WorldClim
temperature and precipitation maps were significantly
different from zero. The Clifford et al. correction reduces
the effect of spatial autocorrelation by adjusting the
estimate for the degrees of freedom when conducting t-
tests to determine significance of a spatial correlation.
Code for implementing the Clifford et al. correction was
taken from Plant (2012), and we used 20 distance classes
to generate correlograms (plots showing the degree of
autocorrelation in each distance class) for each data set.

To answer question two (Does performance differ
between models constructed using two alternative data
sets of contemporary climate?), we used a linear mixed-
effects model. Mixed-effects models include both
fixed terms (e.g., the explanatory variables that one is
interested in modeling) as well as random effects
(variables treated as random samples from a larger
population). In general, fixed effects have informative
levels that one is interested in comparing, whereas
comparisons of different levels of a random effect are not
of interest (Crawley 2007). In our study we tested for
significant fixed effects of algorithm (Maxent, GLM, or
RF), climate data set (CRU or WorldClim), or their
interaction on AUC and kappa, while specifying species
as a random effect. Separate models were run for the
two model performance metrics. The effects of algorithm
were coded as dummy variables, and the significance of
fixed effects were tested as the likelihood ratio between
the full model and models with the effect being tested
removed (Fox 2002).

To answer question three (Is the discrepancy in spatial
predictions from models using two alternative contem-
porary climate data sets less than the discrepancy in
spatial predictions of future conditions made using data
from three alternative GCMs?), we calculated the spatial
correlation between contemporary prediction maps
constructed from WorldClim and CRU input data for
each species and algorithm separately. We also calculat-
ed the average spatial correlation among the future
projection maps across the three GCMs based on models
built with data from the CRU data set (results were
qualitatively similar when projections were compared
with CEMs constructed from the WorldClim data). We
used a linear mixed-effects model to test for significant
fixed effects of algorithm, time step (contemporary or
future) or their interaction on the spatial correlation
between prediction maps, again specifying species as a
random effect. The use of time in our model allows us to
directly compare the variation in spatial prediction maps
between contemporary climate data sets (CRU and
WorldClim) with the variation in spatial predictions
across the GCMs used to describe future climate. Model

Figure 1. Differences in spatial coverage between two grid-
based contemporary climate data sets, Climate Research Unit
(CRU) and WorldClim, compiled in 2014. A close up of the
northern Caribbean (Cuba and the Bahamas) and adjacent
southern Florida shows slight differences in resolution between
the two data sets.
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significance was tested as described for question two
above. We used the Clifford et al. correction as described
for question one to evaluate the potential for spatial
autocorrelation in CRU and WorldClim prediction maps
to influence our results.

To answer question four (Is the discrepancy in spatial
predictions using two alternative climate data sets
associated with model performance?), we used linear
regression to associate the spatial correlation between
CRU and WorldClim prediction maps with AUC and
kappa scores for each species model. Performance
metrics were averaged between CRU and WorldClim
models. We also test for an association between sample
size (the number of presences used in each model) and
the spatial correlation between contemporary prediction
maps. Unless indicated otherwise, all statistical analyses
were conducted in R (R Development Core Team 2005).

Results

Is the discrepancy between contemporary climate
data sets greater or less than the discrepancy
between projections of future climate?

Spatial correlations between contemporary climate
data sets averaged r = 0.972 6 0.007 and r = 0.997 6
0.002 for monthly precipitation and monthly tempera-
ture respectively, and spatial correlations across future
climate projections averaged r = 0.966 6 0.007 and r =
0.996 6 0.002 for precipitation and temperature,
respectively (Table 2). Use of the Clifford et al. correction
to test for significance of spatial correlations indicated
that all correlations were significant after adjusting for
spatial autocorrelation (all P , 0.001). There was no
difference in the average spatial correlation between
contemporary and future climate data sets for either
temperature (t = 20.948, df = 22, P = 0.350) or
precipitation (t = 21.854, df = 22, P = 0.080). Average

spatial correlations were greater among temperature
variables than among precipitation variables for both the
contemporary (t = 212.611, df = 12.40, P , 0.001) and
future time steps (t = 214.003, df = 12.91, P , 0.001).

Does performance differ between models
constructed using two alternative data sets of
contemporary climate?

Between 5 and 9 uncorrelated predictor variables were
selected to create CEMs for each species (Table 1). Model
performance based on the AUC metric was universally
high, exceeding 0.90 in all but one case (Table 3). Kappa
scores were more variable, ranging from 0.060 to 0.920.
The linear mixed-effects model indicated a significant
effect of algorithm on performance of species models
using both AUC and kappa as response metrics (all P ,
0.01), whereas the effect of climate data set was not
significant in either case (x2 = 0.13, df = 1, P = 0.71 and
x2 = 0.70, df = 1, P = 0.40 for models of AUC and
kappa, respectively). Random forests were the best-
performing models, followed by maximum entropy, with
generalized linear models showing the lowest perfor-
mance. In contrast, spatial correlations between predic-
tion maps created describing climate suitability for the
12 species did not vary significantly among algorithms
(x2 = 0.21, df = 1, P = 0.65 and x2 = 3.09, df = 1, P =
0.08 for tests of RF vs. GLM and Maxent vs. GLM,
respectively) and ranged from 0.246 to 0.980 (Table 4).

Is the discrepancy in spatial predictions from
models using two alternative contemporary
climate data sets less than the discrepancy in
spatial predictions of future conditions made
using data from three alternative GCMs?

The effect of time (contemporary or future) in the
mixed model was significant (x2 = 5.11, df = 1, P =

Table 2. Correlation coefficients (r) by month, compiled in 2011, between two sources of contemporary global climate data, the
Climate Research Unit and WorldClim data sets, and three general circulation models describing future climate (the Geophysical
Fluid Dynamics Laboratory Coupled Model version 2.0, the National Center for Atmospheric Research Community Climate System
Model version 3.0, and the Hadley Center for Climate Prediction, United Kingdom Meteorological Office coupled model version 3.0).
All projections are for the A1B CO2 emission scenario from the Intergovernmental Panel on Climate Change.

Contemporary climate (CRU-WorldClim) Future climate (three general circulation models)

Month Precipitation Temperature Precipitation Temperature

January 0.981 0.999 0.972 0.998

February 0.980 0.998 0.977 0.997

March 0.977 0.998 0.968 0.998

April 0.976 0.998 0.975 0.998

May 0.974 0.998 0.970 0.997

June 0.967 0.996 0.970 0.996

July 0.966 0.995 0.960 0.992

August 0.966 0.994 0.956 0.992

September 0.965 0.995 0.959 0.996

October 0.963 0.996 0.964 0.997

November 0.966 0.998 0.957 0.997

December 0.979 0.999 0.969 0.997

Average r (6 1 SD) 0.972 6 0.007 0.997 6 0.002 0.966 6 0.007 0.996 6 0.002

Climate Envelope Model Predictions J.I. Watling et al.

Journal of Fish and Wildlife Management | www.fwspubs.org June 2014 | Volume 5 | Issue 1 | 19



0.02), indicating that spatial correlations of predictions
with contemporary climate data sets were greater (mean
r = 0.845 6 0.099 for the best-performing random forest
algorithm) than correlations of predictions among future
climate projections (mean r for random forest models =
0.766 6 0.094; Table 4). Use of the Clifford et al. correction
indicated that all correlations between prediction maps were
significant after adjusting for spatial autocorrelation (all P ,
0.001). Contemporary prediction maps for the 12 species
using CRU and WorldClim data are included in Figure 2.

Is the discrepancy in spatial predictions using two
alternative climate data sets associated with
model performance?

There was no association between AUC scores (mean
of AUC from CRU and WorldClim models) and spatial
correlations of either contemporary or future prediction
maps (both P . 0.343). Spatial correlations between
contemporary prediction maps were positively associ-
ated with kappa scores however (F1,10 = 9.01, P =
0.013; Figure 3), although there was no relationship
between kappa and spatial correlations among future
prediction maps (F1,10 = 0.08, P = 0.778). Spatial

correlations between CRU and WorldClim prediction maps
were independent of sample size (F1,10 = 0.21, P = 0.660).

Discussion

Neither performance nor spatial predictions of CEMs
for 12 species of threatened and endangered vertebrates
in the southeastern United States varied significantly
between two different contemporary climate data sets.
In contrast, CEM performance was significantly affected
by the choice of modeling algorithm, and spatial
predictions were significantly more discrepant for the
future than for the contemporary period. We therefore
conclude that the choice of contemporary climate data
set from which CEMs are constructed contributes
relatively little to uncertainty in model predictions
compared with other parameters such as algorithm
and GCM selection. However, species with relatively low
kappa scores (Everglades snail kite Rostrhamus sociabilis
plumbeus, whooping crane Grus americana, red-cockad-
ed woodpecker Picoides borealis, and American crocodile
Crocodylus acutus) had more discrepant prediction maps
between climate data sets than species with high kappa

Table 3. Summary model performance metrics compiled in 2011 (AUC and kappa, average values across 100 random partitions
of occurrence data into testing-training subsets) for species, algorithms (generalized linear models [GLM]; Maximum entropy [Max];
and random forests [RF]), and contemporary climate data sets (Climate Research Unit [CRU] and WorldClim).

Common name

CRU WorldClim

AUC Kappa AUC Kappa

GLM Max RF GLM Max RF GLM Max RF GLM Max RF

Mammals

Florida panther Puma concolor coryi 0.981 0.995 0.990 0.262 0.668 0.890 0.984 0.994 0.993 0.326 0.610 0.897

Birds

Florida grasshopper sparrow
Ammodramus savannarum floridanus 0.987 0.998 0.983 0.065 0.310 0.773 0.987 0.998 0.974 0.119 0.365 0.816

Florida scrub jay Aphelocoma
coerulescens 0.998 0.990 0.999 0.718 0.526 0.902 0.997 0.992 0.999 0.601 0.502 0.890

Piping plover Charadrius melodus 0.865 0.927 0.989 0.168 0.378 0.836 0.857 0.927 0.990 0.172 0.409 0.784

Wood stork Mycteria americana 0.910 0.947 0.980 0.422 0.507 0.863 0.912 0.902 0.980 0.430 0.488 0.870

Audubon crested caracara Polyborus
plancus audubonii 0.957 0.993 0.999 0.114 0.712 0.897 0.954 0.993 1.000 0.091 0.731 0.900

Everglades snail kite Rostrhamus
sociabilis plumbeus 0.994 0.995 0.999 0.322 0.540 0.663 0.991 0.994 0.999 0.316 0.575 0.903

Whooping crane Grus americana 0.918 0.986 0.989 0.102 0.351 0.673 0.920 0.980 0.989 0.092 0.348 0.708

Red-cockaded woodpecker Picoides
borealis 0.964 0.958 0.981 0.273 0.341 0.707 0.964 0.957 0.988 0.273 0.334 0.812

Reptiles and amphibians

American crocodile Crocodylus acutus 0.931 0.942 0.979 0.078 0.126 0.522 0.931 0.947 0.986 0.060 0.117 0.664

Sand skink Neoseps reynoldsi 0.998 0.996 0.997 0.234 0.111 0.734 0.996 0.997 0.993 0.416 0.144 0.756

Eastern indigo snake Drymarchon
corais couperi 0.979 0.996 0.999 0.354 0.552 0.895 0.979 0.987 0.999 0.317 0.592 0.920
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scores. Herein we discuss the implications of our results
for applied conservation.

Although spatial correlations between contemporary
prediction maps constructed from WorldClim and CRU
data were generally high, and greater than spatial
correlations among future prediction maps constructed
from three alternative GCMs, there was interspecific
variation in correlations for contemporary prediction
maps (Table 4). We found that the most discrepant maps
resulted from the models with the lowest average kappa
scores. Kappa describes a model’s ability to correctly
classify contemporary presences and absences (Fielding
and Bell 1997). Because different applications of CEMs may
differ in their tolerance for misclassified presences or
absences (omission and commission errors; Fielding and
Bell 1997), low kappa scores per se do not necessarily
mean that a model is not useful for a particular application.
For example, a model may receive a low kappa score
because it misclassifies many absences (i.e., it has low

specificity), but if a user prioritizes correctly classified
presences when using CEMs to define suitable areas for
restoration or translocation, for example, the model’s
inability to correctly classify absences may be of little
concern. However, users of CEMs for applied conservation
should also be aware that a low kappa score may also
indicate the sensitivity of prediction maps to variation in
climate data inputs. We noted no obvious ecological
correlates uniting species for which kappa scores were low,
although identifying such correlates would be useful for
prioritizing species for assessment using CEMs.

One important message resulting from our work is the
importance of considering multiple performance metrics
when evaluating models. Here we found that kappa, but
not AUC, was associated with spatial discrepancy in
prediction maps resulting from models with uniformly
high AUC scores. Although the utility of AUC as a
performance metric has been questioned (Lobo et al.
2008) it remains an important means by which CEMs are

Table 4. Spatial correlations (r) between prediction maps from two contemporary climate data sets compiled in 2011 (the
Climate Research Unit [CRU] and WorldClim) and three general circulation models describing future climate (the Geophysical Fluid
Dynamics Laboratory Coupled Model version 2.0, the National Center for Atmospheric Research Community Climate System Model
version 3.0, and the Hadley Center for Climate Prediction, United Kingdom Meteorological Office coupled model version 3.0) using
three modeling algorithms (generalized linear models [GLM]; Maximum entropy [Max]; and random forests [RF]) and 12 species. All
future climate data are for the A1B CO2 emission scenario from the Intergovernmental Panel on Climate Change.

Common name

Contemporary climate
(CRU –WorldClim)

Future climate
(three general circulation models)

GLM Max RF GLM Max RF

Mammals

Florida panther Puma concolor coryi 0.776 0.934 0.890 0.576 0.829 0.680

Birds

Florida grasshopper sparrow Ammodramus
savannarum floridanus 0.897 0.840 0.844 0.819 0.807 0.618

Florida scrub jay Aphelocoma coerulescens 0.866 0.953 0.917 0.739 0.861 0.899

Piping plover Charadrius melodus 0.956 0.932 0.787 0.856 0.754 0.714

Wood stork Mycteria americana 0.971 0.980 0.884 0.941 0.917 0.901

Audubon crested caracara Polyborus plancus
audubonii 0.922 0.936 0.943 0.945 0.758 0.720

Everglades snail kite Rostrhamus sociabilis
plumbeus 0.565 0.948 0.916 0.350 0.858 0.798

Whooping crane Grus americana 0.939 0.776 0.845 0.869 0.703 0.654

Red-cockaded woodpecker Picoides borealis 0.945 0.978 0.864 0.821 0.902 0.878

Reptiles and amphibians

American crocodile Crocodylus acutus 0.844 0.903 0.701 0.835 0.790 0.800

Sand skink Neoseps reynoldsi 0.246 0.501 0.617 0.842 0.861 0.770

Eastern indigo snake Drymarchon corais
couperi 0.872 0.951 0.933 0.563 0.787 0.764

Average 6 1 SD 0.817 6 0.211 0.886 6 0.135 0.845 6 0.099 0.763 6 0.178 0.819 6 0.064 0.766 6 0.094
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Figure 2. Prediction maps of climate suitability for 12 species compiled in 2014, based on contemporary climate data drawn from
two climate data sets (Climate Research Unit, CRU and WorldClim) using the random forest algorithm. The spatial correlation
between each species-specific pair of maps is included following the species name. In all maps, darker colors indicate greater
climate suitability.
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evaluated and compared with one another. Kappa is less
frequently reported in the literature than AUC, but we
found that it was a more sensitive indicator of spatial
discrepancy in alternative CEM prediction maps. We
recommend using multiple metrics to assess CEM
performance because alternative metrics may provide
different insight into model behavior.

More generally, our research illustrates that similarly
high-performing models (using the widely applied AUC
metric) can sometimes make inconsistent spatial predic-
tions. This observation may have important implications
if CEMs are to be used to make management decisions in
support of species adaptation to climate change. Our
results underscore the importance of thoughtful ap-
proaches to model training, algorithm selection, and the
selection of climate data projections. Models trained
using different sources of contemporary data may show
considerable differences in spatial predictions (Figure 2),
translating into different interpretations regarding the
spatial implementation of conservation actions, such as
designing natural corridors through the landscape that
may allow species to track shifts in climate suitability
(Williams et al. 2005) or protecting areas in anticipation
of them being suitable climate space in the future. Our
work suggests that kappa may be a potential indicator of
the extent to which spatial predictions from CEMs are
sensitive to the data on which they are constructed.
Because of the implications of alternative spatial
predictions for applied conservation, users may want to
evaluate alternative models when kappa scores are low
to assess potential differences in alternative prediction
maps (Jones-Farrand et al. 2011).

Random forests models are only recently gaining
widespread use in predictive modeling of climate change
effects on species, but they showed high performance
as measured by our two evaluation metrics (Table 3).
Although another methods comparison found some-
what lower performance of RF compared with other
methods using simulated species distribution data (Elith

and Graham 2009), our comparison of real occurrence
data indicated consistently high performance of RF
relative to other algorithms, and other studies confirm
the high performance of random forest models (Prasad
et al. 2006; Watling et al. 2012). Furthermore, although
performance is often lower for widespread species
compared with range-limited species (Hernandez et al.
2006; Guisan et al. 2007), model performance was
generally high for even the most geographically wide-
spread species we modeled.

We acknowledge some key limitations of our study.
First, the use of independent survey data (e.g., McCarthy
et al. 2012) to validate model performance may result in
lower performance for all algorithms than reported here.
We also acknowledge that our results may differ if
statistical models that attempt to account for spatial
autocorrelation were used (Dormann et al. 2007).
However, we saw little change in the spatial correlations
between CRU and WorldClim prediction maps when grid
cells were removed from prediction maps to reduce
spatial autocorrelation. By focusing on relative compar-
isons between prediction maps, we assumed that any
bias resulting from spatial autocorrelation is present in
all maps and would have less impact on our results than
if we were comparing absolute species–climate relation-
ships. Finally, we have focused on climate predictors
in this study because climate is believed to play an
important role in limiting the coarse-scale distribution
of many species (Jiménez-Valverde et al. 2011). However,
finer scale distributions of species may be related to many
other factors besides climate (e.g., topography, habitat
availability, etc.), and we have not included such additional
explanatory variables here because our primary purpose
was to make methodological comparisons.

In conclusion, across all species there were no
significant differences in model performance or spatial
predictions between CEMs constructed with WorldClim
or CRU data. Thus, the importance of the contemporary
climate data set used to create models contributes
relatively little to model uncertainty compared with
other factors. However, there were differences in
prediction maps between CRU and WorldClim models
for some species, and the most discrepant maps came
from models with low kappa scores. We advise users to
be aware that a low kappa score may indicate a model
that is particularly sensitive to the conditions on which
it is trained. When using CEMs for conservation planning,
it is wise to evaluate alternative models that make
competing spatial predictions so that a range of alter-
natives may be evaluated.
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